spBayesSurv: Fitting Bayesian Spatial Survival Models Using R
نویسندگان
چکیده
منابع مشابه
spatsurv: An R Package for Bayesian Inference with Spatial Survival Models
Survival methods are used for the statistical modelling of time-to-event data. Survival data are characterised by a set of complete records, in which the time of the event is known; and a set of censored records, in which the event was known to have occurred in an interval. When survival data are spatially referenced, the spatial variation in survival times may be of scientific interest. In thi...
متن کاملBayesian Analysis of Survival Data with Spatial Correlation
Often in practice the data on the mortality of a living unit correlation is due to the location of the observations in the study. One of the most important issues in the analysis of survival data with spatial dependence, is estimation of the parameters and prediction of the unknown values in known sites based on observations vector. In this paper to analyze this type of survival, Cox...
متن کاملmapping spatial variation of disease using classic and bayesian models
abstract disease mapping includes a set of statistical techniques that lead to provide clean maps based on estimation of the incidence, prevalence and mortality rates for the users to be able to estimate the distribution of disease reliably. the main aims of disease mapping are to: describe the spatial variation in disease incidence for the formulation of etiological hypotheses; identify area...
متن کاملBayesian Inference for Spatial Beta Generalized Linear Mixed Models
In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...
متن کاملA tutorial on fitting Bayesian linear mixed models using Stan
With the arrival of the R packages nlme and lme4, linear mixed models (LMMs) have come to be widely used in psychology, cognitive science, and related areas. In this tutorial, we provide a practical introduction to fitting LMMs in a Bayesian framework using the probabilistic programming language Stan. Although the Bayesian framework has several important advantages, specifying a Bayesian model ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Statistical Software
سال: 2020
ISSN: 1548-7660
DOI: 10.18637/jss.v092.i09